Презентация "Электронно-дырочный переход. Транзистор" презентация к уроку по физике (10 класс) на тему

https://accounts.google.com


Подписи к слайдам:

Электронно-дырочный переход. Транзистор

Электронно-дырочный переход (или n – p -переход) – это область контакта двух полупроводников с разными типами проводимости.

При контакте двух полупроводников n - и p -типов начинается процесс диффузии: дырки из p -области переходят в n -область, а электроны, наоборот, из n -области в p -область. В результате в n -области вблизи зоны контакта уменьшается концентрация электронов и возникает положительно заряженный слой. В p -области уменьшается концентрация дырок и возникает отрицательно заряженный слой. На границе полупроводников образуется двойной электрический слой, электрическое поле которого препятствует процессу диффузии электронов и дырок навстречу друг другу.

Пограничная область раздела полупроводников с разными типами проводимости (запирающий слой) обычно достигает толщины порядка десятков и сотен межатомных расстояний. Объемные заряды этого слоя создают между p- и n-областями запирающее напряжение U з, приблизительно равное 0,35 В для германиевых n–p-переходов и 0,6 В для кремниевых.

В условиях теплового равновесия при отсутствии внешнего электрического напряжения полная сила тока через электронно-дырочный переход равна нулю.

Если n – p -переход соединить с источником так, чтобы положительный полюс источника был соединен с p -областью, а отрицательный с n -областью, то напряженность электрического поля в запирающем слое будет уменьшаться, что облегчает переход основных носителей через контактный слой. Дырки из p -области и электроны из n -области, двигаясь навстречу друг другу, будут пересекать n – p -переход, создавая ток в прямом направлении. Сила тока через n – p -переход в этом случае будет возрастать при увеличении напряжения источника.

Если полупроводник с n – p -переходом подключен к источнику тока так, что положительный полюс источника соединен с n -областью, а отрицательный – с p -областью, то напряженность поля в запирающем слое возрастает. Дырки в p -области и электроны в n -области будут смещаться от n – p -перехода, увеличивая тем самым концентрации неосновных носителей в запирающем слое. Ток через n – p -переход практически не идет. Весьма незначительный обратный ток обусловлен только собственной проводимостью полупроводниковых материалов, т. е. наличием небольшой концентрации свободных электронов в p -области и дырок в n -области. Напряжение, поданное на n – p -переход в этом случае называют обратным.

Способность n – p -перехода пропускать ток практически только в одном направлении используется в приборах, которые называются полупроводниковыми диодами. Полупроводниковые диоды изготавливаются из кристаллов кремния или германия. При их изготовлении в кристалл c каким-либо типом проводимости вплавляют примесь, обеспечивающую другой тип проводимости. Полупроводниковые диоды обладают многими преимуществами по сравнению с вакуумными диодами – малые размеры, длительный срок службы, механическая прочность. Существенным недостатком полупроводниковых диодов является зависимость их параметров от температуры. Кремниевые диоды, например, могут удовлетворительно работать только в диапозоне температур от –70 °C до 80 °C. У германиевых диодов диапазон рабочих температур несколько шире.

Полупроводниковые приборы не с одним, а с двумя n – p -переходами называются транзисторами. Название происходит от сочетания английских слов: transfer – переносить и resistor – сопротивление. Обычно для создания транзисторов используют германий и кремний. Транзисторы бывают двух типов: p – n – p -транзисторы и n – p – n -транзисторы.

Германиевый транзистор p – n – p -типа представляет собой небольшую пластинку из германия с донорной примесью, т. е. из полупроводника n -типа. В этой пластинке создаются две области с акцепторной примесью, т. е. области с дырочной проводимостью.

В транзисторе n – p – n -типа основная германиевая пластинка обладает проводимостью p -типа, а созданные на ней две области – проводимостью n -типа.

Пластинку транзистора называют базой (Б), одну из областей с противоположным типом проводимости – коллектором (К), а вторую – эмиттером (Э). Обычно объем коллектора превышает объем эмиттера.

В условных обозначениях разных структур стрелка эмиттера показывает направление тока через транзистор.

Включение в цепь транзистора p – n – p -структуры Переход «эмиттер–база» включается в прямом (пропускном) направлении (цепь эмиттера), а переход «коллектор–база» – в запирающем направлении (цепь коллектора).

При замыкании цепи эмиттера дырки – основные носители заряда в эмиттере – переходят из него в базу, создавая в этой цепи ток I э. Но для дырок, попавших в базу из эмиттера, n – p -переход в цепи коллектора открыт. Большая часть дырок захватывается полем этого перехода и проникает в коллектор, создавая ток I к.

Для того, чтобы ток коллектора был практически равен току эмиттера, базу транзистора делают в виде очень тонкого слоя. При изменении тока в цепи эмиттера изменяется сила тока и в цепи коллектора.

Если в цепь эмиттера включен источник переменного напряжения, то на резисторе R , включенном в цепь коллектора, также возникает переменное напряжение, амплитуда которого может во много раз превышать амплитуду входного сигнала. Следовательно, транзистор выполняет роль усилителя переменного напряжения.

Однако, такая схема усилителя на транзисторе является неэффективной, так как в ней отсутствует усиление сигнала по току, и через источники входного сигнала протекает весь ток эмиттера I э. В реальных схемах усилителей на транзисторах источник переменного напряжения включают так, чтобы через него протекал только небольшой ток базы I б = I э – I к. Малые изменения тока базы вызывают значительные изменения тока коллектора. Усиление по току в таких схемах может составлять несколько сотен.

В настоящее время полупроводниковые приборы находят исключительно широкое применение в радиоэлектронике. Современная технология позволяет производить полупроводниковые приборы – диоды, транзисторы, полупроводниковые фотоприемники и т. д. – размером в несколько микрометров. Качественно новым этапом электронной техники явилось развитие микроэлектроники, которая занимается разработкой интегральных микросхем и принципов их применения.

Интегральной микросхемой называют совокупность большого числа взаимосвязанных элементов – сверхмалых диодов, транзисторов, конденсаторов, резисторов, соединительных проводов, изготовленных в едином технологическом процессе на одном кристалле. Микросхема размером в 1 см 2 может содержать несколько сотен тысяч микроэлементов. Применение микросхем привело к революционным изменениям во многих областях современной электронной техники. Это особенно ярко проявилось в области электронной вычислительной техники. На смену громоздким ЭВМ, содержащим десятки тысяч электронных ламп и занимавшим целые здания, пришли персональные компьютеры.

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него:

Слайд 2

Область применения

Основным свойством диода является то, что он хорошо пропускает ток в одну сторону, но почти не пропускает ток в другую сторону. С помощью нескольких диодов можно преобразовать переменный ток в постоянный, на котором работают большинство компактных электронных устройств

Слайд 3

Устройство диода

Диод представляет собой пластинку германия (c проводимостью p-типа) и индия (n – типа)

Слайд 5

Принцип работы

Таким образом, если к аноду (+) приложить положительное напряжение, а к катоду (-) ток будет легко проходить. Такое подключение называется положительным включением диода. При обратном включении диода (т.е. если к аноду (-), а к катоду (+) ток проходить не будет.

Слайд 7

Плоскостной диод Нетрудно видеть, что у такого диода площадь p-n перехода намного больше, чем у точечного. У мощных диодов эта площадь может достигать до 100 и более квадратных миллиметров, поэтому их прямой ток намного больше, чем у точечных. Именно плоскостные диоды используются в выпрямителях, работающих на низких частотах, как правило, не свыше нескольких десятков килогерц.


Чтобы посмотреть презентацию с картинками, оформлением и слайдами, скачайте ее файл и откройте в PowerPoint на своем компьютере.
Текстовое содержимое слайдов презентации:
РАЗДЕЛ 1. Полупроводниковые приборы Тема: Полупроводниковые диодыАвтор: Баженова Лариса Михайловна, преподаватель ГБПОУ Иркутской области «Ангарский политехнический техникум», 2014 г. Содержание1. Устройство, классификация и основные параметры полупроводниковых диодов1.1. Классификация и условные обозначения полупроводниковых диодов1.2. Конструкция полупроводниковых диодов1.3. Вольтамперная характеристика и основные параметры полупроводниковых диодов2. Выпрямительные диоды2.1. Общая характеристика выпрямительных диодов2.2. Включение выпрямительных диодов в схемах выпрямителей 1.1. Классификация диодовПолупроводниковым диодом называется полупроводниковый прибор с одним p-n переходом и двумя внешними выводами. 1.1. Маркировка диодовМатериал полупроводникаТип диодаГруппа по параметрамМодификация в группеКС156АГД507БАД487ВГ (1) – германий; К (2) – кремний; А (3) – арсенид галлия.Д – выпрямительные, ВЧ иимпульсные диоды;А – диоды СВЧ;C – стабилитроны;В – варикапы;И – туннельные диоды;Ф – фотодиоды;Л – светодиоды;Ц – выпрямительные столбы и блоки.по группам:Первая цифра для «Д»:1 – Iпр < 0,3 A2 – Iпр = 0,3 A…10A3 – Iпр > 0,3 A 1.1. Условное графическое изображение диодов (УГО)а) Выпрямительные, высокочастотные, СВЧ, импульсные; б) стабилитроны; в) варикапы; г) туннельные диоды; д) диоды Шоттки; е) светодиоды; ж) фотодиоды; з) выпрямительные блоки 1.2. Конструкция полупроводниковых диодовНа базу накладывается материал акцепторной примеси и в вакуумной печи при высокой температуре (порядка 500 °С) происходит диффузия акцепторной примеси в базу диода, в результате чего образуется область p-типа проводимости и p-n переход большой плоскостиВывод от p-области называется анодом, а вывод от n-области – катодом 1) Плоскостной диодКристалл полупроводникаМеталлическая пластинкаОсновой плоскостных и точечных диодов является кристалл полупроводника n-типа проводимости, который называется базой 1.2. Конструкция полупроводниковых диодов 2) Точечный диодК базе точечного диода подводят вольфрамовую проволоку, легированную атомами акцепторной примеси, и через неё пропускают импульсы тока силой до 1А. В точке разогрева атомы акцепторной примеси переходят в базу, образуя p-область Получается p-n переход очень малой площади. За счёт этого точечные диоды будут высокочастотными, но могут работать лишь на малых прямых токах (десятки миллиампер).Микросплавные диоды получают путём сплавления микрокристаллов полупроводников p- и n- типа проводимости. По своему характеру микросплавные диоды будут плоскостные, а по своим параметрам – точечные. 1.3. Вольтамперная характеристика и основные параметры полупроводниковых диодовВольтамперная характеристика реального диода проходит ниже, чем у идеального p-n перехода: сказывается влияние сопротивления базы. 1.3. Основные параметры диодов Максимально допустимый прямой ток Iпр.max. Прямое падение напряжения на диоде при макс. прямом токе Uпр.max. Максимально допустимое обратное напряжение Uобр.max = ⅔ ∙ Uэл.проб. Обратный ток при макс. допустимом обратном напряжении Iобр.max. Прямое и обратное статическое сопротивление диода при заданных прямом и обратном напряжениях Rст.пр.=Uпр./ Iпр.; Rст.обр.=Uобр./ Iобр. Прямое и обратное динамическое сопротивление диода. Rд.пр.=∆ Uпр./ ∆ Iпр 2. Выпрямительные диоды2.1. Общая характеристика. Выпрямительным диодом называется полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный в силовых цепях, то есть в источниках питания. Выпрямительные диоды всегда плоскостные, они могут быть германиевые диоды или кремниевые. Если выпрямленный ток больше максимально допустимого прямого тока диода, то в этом случае допускается параллельное включение диодов. Добавочные сопротивления Rд (1-50 Ом) для выравнивания токов в ветвях).Если напряжение в цепи превосходит максимально допустимое Uобр. диода, то в этом случае допускается последова-тельное включение диодов. 2.2. Включение выпрямительных диодов в схемах выпрямителей 1) Однополупериодный выпрямительЕсли взять один диод, то ток в нагрузке будет протекать за одну половину периода, поэтому такой выпрямитель называется однополупериодным. Его недостаток – малый КПД. 2) Двухполупериодный выпрямитель Мостовая схема 3) Двухполупериодный выпрямитель с выводом средней точки вторичной обмотки трансформатора Если понижающий трансформатор имеет среднюю точку (вывод отсередины вторичной обмотки), то двухполупериодный выпрямитель может быть выполнен на двух диодах, включенных параллельно. Недостатками этого выпрямителя являются: Необходимость применения трансформатора со средней точкой; Повышенные требования к диодам по обратному напряжению.. Задание: Определить, сколько одиночных диодов в схеме и сколько диодных мостов. Задания1. Расшифруйте названия полупроводниковых приборов:1 вариант: 2С733А, КВ102А, АЛ306Д2 вариант: КС405А, 3Л102А, ГД107Б З вариант: КУ202Г, КД202К, КС211Б 4 вариант: 2Д504А, КВ107Г, 1А304Б5 вариант: АЛ102А; 2В117А; КВ123А2. Показать путь тока на схеме:1,3,5 вар.: На верхнем зажиме«плюс» источника.2,4 вар.: На верхнем зажиме «минус» источника.


Приложенные файлы

Слайд 2

Диод- электровакуумные или полупроводниковые приборы, которые пропускают переменный электрический ток только в одном направлении и имеют два контакта для включения в электрическую цепь.

Слайд 3

Диод имеет два контакта, которые называют анодом и катодом. При включении диода в электрическую цепь ток протекает от анода к катоду. Умение проводить ток только в одну сторону - основное свойство диода. Диоды относятся к классу полупроводников и считаются активными электронным компонентам (резисторы и конденсаторы - пассивными).

Слайд 4

Односторонняя проводимость диода является его основным свойством. Это свойство и определяет назначение диода: – преобразование высокочастотных модулированных колебаний в токи звуковой частоты (детектирование); – выпрямление переменного тока в постоянный Свойства диода


Слайд 5

Классификация диодов По исходному полупроводниковому материалу диоды делят на четыре группы: германиевые, кремниевые, из арсенида галлия и фосфида индия. Германиевые диоды используются широко в транзисторных приемниках, так как имеют выше коэффициент передачи, чем кремниевые. Это связано с их большей проводимостью при небольшом напряжении (около 0,1…0,2 В) сигнала высокой частоты на входе детектора и сравнительно малом сопротивлении нагрузки (5…30 кОм). Полупроводниковые диоды


Слайд 6

По конструктивно-технологическому признаку различают диоды точечные и плоскостные. По назначению полупроводниковые диоды делят на следующие основные группы: выпрямительные, универсальные, импульсные, варикапы, стабилитроны (опорные диоды), стабисторы, туннельные диоды, обращенные диоды, лавинно-пролетные (ЛПД), тиристоры, фотодиоды, светодиоды и оптроны.

Слайд 7

Диоды характеризуются такими основными электрическими параметрами: – током, проходящим через диод в прямом направлении (прямой ток Іпр); – током, проходящим через диод в обратном направлении (обратный ток Іобр); – наибольшим допустимым выпрямленным ТОКОМ выпр. макс; – наибольшим допустимым прямым током І пр.доп.; – прямым напряжением U n p ; – обратным напряжением и об Р; – наибольшим допустимым обратным напряжением и обр.макс – емкостью Сд между выводами диода; – габаритами и диапазоном рабочих температур

Слайд 8

При подключении диода в цепь должна быть соблюдена правильная полярность. Чтобы было легко определить расположение катода и анода, на корпус или на один из выводов диода наносят специальные метки. Встречаются различные способы маркировки диодов, но чаще всего на сторону корпуса, соответствующую катоду, наносят кольцевую полоску. Если маркировка диода отсутствует, то выводы полупроводниковых диодов можно определить с помощью измерительного прибора - диод пропускает ток только в одну сторону Работа диода


Слайд 9

Работу диода можно наглядно представить при помощи простого эксперимента. Если к диоду через маломощную лампу накаливания подключить батарею так, чтобы положительный вывод батареи был соединен с анодом, а отрицательный - с катодом диода, то в получившейся электрической цепи потечет ток и лампочка загорится. Максимальная величина этого тока зависит от сопротивления полупроводникового перехода диода и поданного на него постоянного напряжения. Данное состояние диода назвается открытым, ток, текущий через него, - прямым током I пр, а поданное на него напряжение, из-за которого диод оказался в открытым, - прямым напряжением U пр. Если выводы диода поменять местами, то лампа не будет светиться, так как диод будет находиться в закрытом состоянии и оказывать току в цепи сильное сопротивление. Стоит отметить, что небольшой ток через полупроводниковый переход диода в обратном направлении все же потечет, но в сравнении с прямым током будет настолько маленьким, что лампочка даже не среагирует. Такой ток называют обратым током I обр, а напряжение, создающее его,- обратным напряжением U обр.

10

Слайд 10

Маркировка диодов На корпусе диода обычно указывают материал полупроводника, из которого он изготовлен (буква или цифра), тип (буква), назначение или электрические свойства прибора (цифра), букву, соответствующую разновидности прибора, и дату изготовления, а также его условное обозначение. Условное обозначение диода (анод и катод) указывает, как нужно подключать диод на платах устройств. Диод имеет два вывода, один из которых катод (минус), а другой - анод (плюс). Условное графическое изображение на корпусе диода наносится в виде стрелки, указывающей прямое направление, если стрелки нет, то ставится знак « + ». На плоских выводах некоторых диодов (например, серии Д2) прямо вьіштамповано условное обозначение диода и его тип. При нанесении цветового кода, цветную метку, точку или полоску наносят ближе к аноду (рис. 2.1). Для некоторых типов диодов используется цветная маркировка в виде точек и полосок (табл. 2.1). Диоды старых типов, в частности точечные, выпускались в стеклянном оформлении и маркировались буквой « Д » с добавлением цифры и буквы, обозначающих подтип прибора. Германиево-индиевые плоскостные диоды имели обозначение « Д7 ».



11

Слайд 11

Система обозначений Система обозначений состоит из четырех элементов. Первый элемент (буква или цифра) указывает исходный полупроводниковый материал, из которого изготовлен диод: Г или 1 - германий* К или 2 - кремний, А или 3 - арсенид галлия, И или 4 - фосфид индия. Второй элемент - буква, показывающая класс или группу диода. Третий элемент - число, определяющее назначение или электрические свойства диода. Четвертый элемент указывает порядковый номер технологической разработки диода и обозначается от А до Я. Например, диод КД202А расшифровывается: К - материал, кремний, Д - диод выпрямительный, 202 - назначение и номер разработки, А - разновидность; 2С920 - кремниевый стабилитрон большой мощности разновидности типа А; АИЗ01Б - фосфид-индиевый туннельный диод переключающей разновидности типа Б. Иногда встречаются диоды, обозначенные по устаревшим системам: ДГ-Ц21, Д7А, Д226Б, Д18. Диоды Д7 отличаются от диодов ДГ-Ц цельнометаллической конструкцией корпуса, вследствие чего они надежнее работают во влажной атмосфере. Германиевые диоды типа ДГ-Ц21…ДГ-Ц27 и близкие к ним по характеристикам диоды Д7А…Д7Ж обычно используют в выпрямителях для питания радиоаппаратуры от сети переменного тока. В условное обозначение диода не всегда входят некоторые технические данные, поэтому их необходимо искать в справочниках по полупроводниковым приборам. Одним из исключений является обозначение для некоторых диодов с буквами КС или цифрой вместо К (например, 2С) - кремниевые стабилитроны и стабисторы. После этих обозначений стоит три цифры, если это первые цифры: 1 или 4, то взяв последние две цифры и разделив их на 10 получим напряжение стабилизации Uст. Например, КС107А - стабистор, Uст = 0,7 В, 2С133А - стабилитрон, Uст = 3,3 В. Если первая цифра 2 или 5, то последние две цифры показывают Uст, например, КС 213Б - Uст = 13 В, 2С 291А - 0Uст = 91 В, если цифра 6, то к последним двум цифрам нужно прибавить 100 В, например, КС 680А – Uст = 180 В.

12

Слайд 12

Структурная схема полупроводникового диода с р - n-переходом: 1 - кристалл; 2 - выводы (токоподводы); 3 - электроды (омические контакты); 4 - плоскость р - n-перехода. Типичная вольтамперная характеристика полупроводникового диода с р - n-переходом: U - напряжение на диоде; I - ток через диод; U* oбр и I* oбр - максимальное допустимое обратное напряжение и соответствующий обратный ток; U cт - напряжение стабилизации.

13

Слайд 13

Малосигнальная (для низких уровней сигнала) эквивалентная схема полупроводникового диода с р - n-переходом: r p-n - нелинейное сопротивление р - n-перехода; r б - сопротивление объёма полупроводника (базы диода); r yт - сопротивление поверхностных утечек; С Б - барьерная ёмкость р - n-перехода; С диф - диффузионная ёмкость, обусловленная накоплением подвижных зарядов в базе при прямом напряжении; С к - ёмкость корпуса; L к - индуктивность токоподводов; А и Б - выводы. Сплошной линией показано подключение элементов, относящихся к собственно р - n-переходу. Вольтамперные характеристики туннельного (1) и обращенного (2) диодов: U - напряжение на диоде; I - ток через диод


14

Слайд 14

Полупроводниковые диоды (внешний вид): 1 - выпрямительный диод; 2 - фотодиод; 3 - СВЧ диод; 4 и 5 - диодные матрицы; 6 - импульсный диод. Корпуса диодов: 1 и 2 - металло-стеклянные; 3 и 4 - металло-керамические; 5 - пластмассовый; 6 - стеклянный

15

Слайд 15

Диод Шоттки Диоды Шоттки имеют очень малое падение напряжения и обладают повышенным быстродействием по сравнению с обычными диодами. Стабилитрон / диод Зенера / Стабилитрон препятствует превышению напряжения выше определённого порога на конкретном участке схемы. Может выполнять как защитные так и ограничительные функции, работают они только в цепях постоянного тока. При подключении следует соблюдать полярность. Однотипные стабилитроны можно соединять последовательно для повышения стабилизируемого напряжения или образования делителя напряжений. Варикап Варикап (по другому емкостной диод) меняет своё сопротивление в зависимости от поданного на него напряжения. Применяется как управляемый конденсатор переменной емкости, например, для настройки высокочастотных колебательных контуров.

16

Слайд 16

Тиристор Тиристор имеет два устойчивых состояния: 1) закрытое, то есть состояние низкой проводимости, 2) открытое, то есть состояние высокой проводимости. Другими словами он способен под действием сигнала переходить из закрытого состояния в открытое. Тиристор имеет три вывода, кроме Анода и Катода еще и управляющий электрод - используется для перевода тиристора во включенное состояние. Современные импортные тиристоры выпускаются и в корпусах ТО-220 и ТО-92Тиристоры часто используются в схемах для регулировки мощностей, для плавного пуска двигателей или включения лампочек. Тиристоры позволяют управлять большими токами. У некоторых типов тиристоров максимальный прямой ток достигает 5000 А и более, а значение напряжений в закрытом состоянии до 5 кВ. Мощные силовые тиристоры вида Т143(500-16) применяются в шкафах управления эл.двигателями, частотниках

17

Слайд 17

Светодиод диоды Генри Раунда Светодиод излучает свет при пропускании через него электрического тока. Светодиоды применяются в устройствах индикации приборов, в электронных компонентах (оптронах), сотовых телефонах для подсветки дисплея и клавиатуры, мощные светодиоды используют как источник света в фонарях и т.д. Светодиоды бывают разного цвета свечения, RGB и т.д.

18

Последний слайд презентации: Диод

Инфракрасный диод Инфракрасные светодиоды (сокращенно ИК диоды) излучают свет в инфракрасном диапазоне. Области применения инфракрасных светодиодов это оптические контрольно-измерительные приборы, устройства дистанционного управления, оптронные коммутационные устройства, беспроводные линии связи. Ик диоды обозначаются так же как и светодиоды. Инфракрасные диоды излучают свет вне видимого диапазона, свечение ИК диода можно увидеть и посмотреть например через камеру сотового телефона, данные диоды так же применяют в камерах видеонаблюдения, особенно на уличных камерах чтобы в темное время суток была видна картинка. Фотодиод Фотодиод преобразует свет попавший на его фоточувствительную область, в электрический ток, находит применение в преобразовании света в электрический сигнал.